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Abstract
The transient photoconductivity (TPC) in hydrogenated amorphous silicon is
studied by numerical simulation. In addition to normal free carrier capture
(emission) transitions into (from) localized states by the multiple-trapping
(MT) process, we include the process of electron hopping (EH) through the
conduction band tail states. The distribution of the dangling bond density
is calculated by the defect pool model, while exponential distributions are
assumed for the conduction and valence band tails. The simulation results
are in good agreement with previous theoretical results: a hopping transport
energy level identified as the peak of the energy distribution of the hopping
photoconductivity is in excellent agreement with the theoretical hopping
transport energy of Monroe. The simulated TPC is studied as a function
of temperature in order to determine the relative contribution of MT and
EH transport mechanisms. A smooth transition around 130 K between high
temperature extended-state conduction via MT and low temperature localized-
state EH is determined.

1. Introduction

Hydrogenated amorphous silicon (a-Si:H) can be doped effectively [1, 2], and this property
has attracted considerable interest and research effort as well as applications in large-area
electronics, solar cells and thin film transistors. The electronic properties of a-Si:H are
dominated by carrier interactions with the disorder induced density of localized band tail states
in the gap adjacent to the conduction and valence bands. The mechanisms of carrier transport
depend sensitively on the temperature and the density of localized states. At sufficiently high
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temperatures and/or low density of localized states, the carriers move in the bands of extended
states. When the temperature is sufficiently low and/or the density of localized states is high,
the transport is controlled by hopping in the distribution of localized states.

Near room temperature, the results of the transient photo-response measurements in a-
Si:H are well described by the multiple-trapping (MT) model [3, 4], in which the free carriers
created by the short laser pulse move by continuous trapping and release into and from
localized tail states. The interpretation of the MT process was obtained by describing the
evolution of the carriers in terms of a time-dependent demarcation energy. At low temperatures,
Monroe [5] analyzed the transient carrier thermalization by hopping between localized states
in an exponential band tail. Marschall has studied by simulation the transient photocurrent
(TPC) in disordered semiconductors in the case of hopping transport using Monte Carlo
techniques [6]. Main et al [7] have also simulated the TPC in disordered semiconductors,
including both MT and electron hopping (EH) processes, using a matrix-based Markov chain
computation.

The present paper extends our previous work on the steady state photo-transport in a-
Si:H including EH through tail states, where a smooth transition around 110 K was drawn
between low temperature EH transport in the conduction band tail (CBT) and high temperature
extended-state transport [8]. Similarly, the purpose of the present work is to provide numerical
simulations for the TPC in undoped a-Si:H, involving both conduction mechanisms related to
extended states via MT and localized-state EH, and determine the relative contribution of each
with varying temperature. We consider an exponential CBT and a valence band tail (VBT)
and use the defect pool model (DPM) for the dangling bond (DB) defect density [9, 10]. The
resulting density of states with three components of different state types (the valence band
donor-like tail states, the conduction band acceptor-like tail states and the DPM-DB states) is
then used to simulate the TPC. We follow the numerical method applied by Main et al [7]
in modeling the TPC with coupled MT and EH transport. This method consists of dividing
the energy gap into closely spaced energy levels and solving simultaneously in the transient
regime coupled rate equations corresponding to each energy level, for all free and trapped
carrier densities. The simulations cover low and high temperatures in a single model that
couples localized–extended and localized–localized state carrier transitions. The results are
in close agreement with Monroe analysis of hopping transport at low temperatures. The effect
of the temperature on the two conduction mechanisms shows a significant contribution of the
EH process at low temperatures (T < 130 K), while the MT mechanism becomes dominant at
moderate and high temperatures (T > 130 K).

2. TPC simulation

The density of states distribution of the intrinsic a-Si:H chosen for the present work (figure 1)
includes exponential CBT and VBT:

gc(E) = Gc exp

(
E − Ec

kBTc

)
and gv(E) = Gv exp

(
Ev − E

kBTv

)
(1)

with kB the Boltzmann constant, Ec and Ev the mobility edges and the tail parameters,
Tc = 310 K, Tv = 550 K, Gc = 2 × 1021 cm−3 eV−1 and Gv = 2 × 1021 cm−3 eV1 as
model values chosen in agreement with the literature. The DB state distribution is calculated
by the DPM [9, 10]:

D(E) = ξ

(
2

f 0(E)

)kBT ∗/2Evo

P

(
E + σ 2

2Evo

)
(2)
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with

ξ =
(

Gv2E2
vo

(2Evo − kBT ∗)

)(
H

NSiSi

)kB T ∗/4Evo

exp

( −1

2Evo

(
EP − Ev − σ 2

4Evo

))
,

and P(E) is the Gaussian shaped defect pool with σ and E p respectively its width and peak
position in the gap. Evo = kBTv is the width of the VBT. H and NSiSi are the total hydrogen
and silicon concentrations, respectively, and T ∗ is the equilibrium temperature (freeze-in
temperature). The density distributions of the different charge DB states (neutral or singly

Figure 1. Density of states for undoped a-Si:H (EF = −0.9 eV). Also shown are the exponential
CBT, gc(E), and VBT, gv(E), state distributions and the total DB defect state distribution, D(E),
calculated by the DPM. The three components D−(E), D0(E), and D+(E) are shown in dashed
lines.

occupied D0 states, positively charged or unoccupied D+ states, and negatively charged or
doubly occupied D− states) are given by

D0(E) = D(E) f 0(E) (3)

D+(E) = D(E) f +(E) (4)

D−(E) = D(E) f −(E) (5)

with f 0, f + and f − the thermal equilibrium DB occupation functions [11], the probabilities
for the DB state of being, respectively, singly occupied, unoccupied, and doubly occupied.
The arrow in figure 1 points to the dark Fermi energy, EF, positioned at 0.9 eV below Ec,
determined by solving the charge neutrality equation. This charge neutrality condition is
verified at each instant throughout the simulation. The parameters used for the band tails and
the DPM calculation of the DB density of states are given in table 1.

The simulation procedures are exactly those detailed in our paper on the steady state
photo-response [8], except that the time-dependent densities of free and trapped carriers in
the transient regime require a time-step definition in the applied finite difference technique [12]
before applying the appropriate numerical method for the solution. The equations of the time-
dependent carrier density rates are two continuity equations for the free carrier densities n and
p at Ec and Ev,

dn

dt
=

∑
i

Ren
T,i + Ren

D,i −
∑

i

Rcn
T,i + Rcn

D,i (6a)

dp

dt
=

∑
i

Re p
T,i + Re p

D,i −
∑

i

Rc p
T,i + Rc p

D,i (6b)
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Table 1. Parameters for the gap density of states.

Eg (eV) 1.9
Gv (cm−3 eV−1) 2 × 1021

Tv (K) 550
σ (eV) 0.19
Ec − E p (eV) 0.63
Evo (meV) 47.4
NSiSi (cm−3) 2 × 1023

H (cm−3) 5 × 1021

U (eV) 0.2
T ∗ (K) 500
Gc (cm−3 eV−1) 2 × 1021

Tc (K) 310

and 4N detailed balance equations, at each trap level of the N energy levels Ei (i = 1, . . . , N)

across the gap, for 4N trapped carrier densities, ni (trapped electrons in CBT), pi (trapped
holes in VBT), N+

i (hole-occupied D0 state), and N−
i (electron-occupied D0 state),

dni

dt
= Rcn

T,i − Ren
T,i + Rn

hi,i − Rn
ho,i , (7a)

dpi

dt
= Rc p

T,i − Re p
T,i , (7b)

dN+
i

dt
= Rcn

D,i − Ren
D,i , (8a)

dN−
i

dt
= Rc p

D,i − Re p
D,i . (8b)

The carrier densities obtained by solving the 4N + 2 coupled non-linear equations using
appropriate numerical methods must satisfy the charge neutrality equation:

p +
∑

i

pi +
∑

i

N+
i − n −

∑
i

ni−
∑

i

N−
i = 0 (9)

at all time points over the simulation time range.
The MT rates Rcn/p

T/D,i and Ren/p
T/D,i , associated with electron/hole capture/emission

into/from tail/defect state at level Ei , have often been used in conventional TPC simulations
that neglect hopping transitions [12, 13]. The EH rates Rn

hi,i and Rn
ho,i , concerning the trapped

electron density ni associated with EH into (out of) CBT states at Ei , are expressed in terms
of the nearest neighbor hopping theory in amorphous semiconductors [14]. The transport, in
this approach, is based on the single hopping transition from level Ei to level E j with the
rate [15–17]

�i, j = ν0

(
gc(E j)

GT

)
× exp

(
−2Ri, j

a

)
if Ei � E j (iso-energetic or downward hops)

(10a)

with GT = ∫ Ei

Ev
gc(E) dE , the total density of CBT states deeper than Ei , or

�i, j = ν0

(
gc(Ei)

GT

)
× exp

(
−2Ri, j

a

)
× exp

(
− E j − Ei

kBT

)
if Ei < E j (upward hops),

(10b)
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with GT = ∫ E j

Ev
gc(E) dE the total density of CBT states deeper than E j . ν0 is the attempt to

escape frequency and a is the localization radius. gc(E j )/GT in equation (10a) and gc(Ei )/GT

in equation (10b) are respectively the weighting factors for the hopping probability to a state
at E j � Ei and to a state at E j > Ei . Ri, j is the hopping distance from a state at Ei to a
neighboring state at E j , given by [6, 15, 16]

Ri, j = {(4π/3)GT }−1/3 (11)

with GT , as above, having the integral expression depending on whether hopping from Ei

is iso-energetic or downward, or it is upward. The total hopping rate out of level Ei is
Rn

ho,i = ni × ∑
j �i, j and the EH photoconductivity at level Ei , taking account of Einstein

relation [14], is

σhop(Ei) = e2

6kBT
(Ri, j )

2 Rn
ho,i . (12)

The total EH photoconductivity is then

σhop = e2

6kBT

∑
i

(Ri, j )
2 Rn

ho,i . (13)

The free electron and hole densities contribute to the TPC via MT following the expression

σMT(t) = e[μnn(t) + μp p(t)] (14)

where μn (μp) is the free electron (hole) mobility and e the electron charge. The total TPC is
simply the sum of EH and MT photoconductivity components,

σph(t) = σhop(t) + σMT(t). (15)

Table 2 lists the parameter values used in the TPC simulations.

Table 2. Parameters for the TPC simulation.

Nc = Nv (cm−3) 1020

Co
n = Co

p (cm3 s−1) 8.5 × 10−8

C+
n = C−

p (cm3 s−1) 3 × 10−7

Cc
n = Cv

p (cm3 s−1) 5 × 10−8

Cc
p = Cv

n (cm3 s−1) 5 × 10−9

μn (cm2 s−1 V−1) 10
μp (cm2 s−1 V−1) 0.3
ν0 (s−1) 2 × 1012

a (cm) 5 × 10−7

3. Results and discussion

Before dealing with the interpretation of the TPC results, we start by examining the influence
of EH as coupled to the MT process. Figure 2 illustrates the relative contribution of EH to
the TPC, where the TPC σph (curve with symbol ◦) is plotted together with the conventional
TPC σconv uniquely based on MT (curve with symbol ∗). σconv is a result of a TPC simulation
performed without the hopping terms in the rate equation (7a) [13] and is given by a similar
equation to (14). We also show the two TPC components, due to MT conduction σMT (curve
with symbol +) and to EH conduction σhop (curve with symbol �), to examine the relative
contribution of each. The comparison is made for an excitation density N = 1016 cm−3 at
T = 90 K. It is clear that the TPC is dominated by the EH photoconductivity (σph = σhop)

5
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Figure 2. The MT photoconductivity σMT (symbol +) and EH photoconductivity σhop (symbol �)
components of the TPC σph (symbol ◦), at T = 90 K. The conventional TPC σconv (symbol ∗)
simulated without EH consideration is also shown for comparison.

over the time range starting from t = 5 × 10−12 s. It is also clear that the new TPC σph

and the conventional TPC σconv are nearly superimposed over the entire time range (10−14–1 s).
Although the EH component σhop dominates the transport above t = 5×10−12 s (the onset time
of electron trapping) and the MT component is negligibly low in this range, the EH process does
not have a significant influence on the shape and magnitude of the conventional TPC σconv. This
leads to the conclusion that the TPC due to EH transport (σhop) and that based uniquely on MT
(σconv) are similar for an exponential CBT. This result agrees with the simulation result of Silver
et al [18] and Marshall et al [19] using Monte Carlo techniques. The TPC starts nearly constant
owing to the carriers initially located in the extended states. After about 6 × 10−13 s, the TPC
decreases following the power-law time dependence σph ∝ t−(1−αc), where αc = T/Tc = 0.29
is the dispersion parameter. The behavior of σph (dominated by σhop) is similar to that of σconv

for an exponential band tail [3, 4].
Now, we will study the electron thermalization by combined MT and EH transport.

Before that, we will first recall the conventional electron thermalization occurring only via
MT. Figure 3 shows the evolution of the energy distribution of trapped electron density ni in
the CBT at times from 10−14 to 1 s varying by a factor of 10 step. After excitation there is
photogeneration of charge carriers, and after a very short time the electrons are in multiple
interaction with the traps of the CBT. The progressive electron thermalization proceeds in
the form of a packet. The majority of electrons are concentrated in the states around the
demarcation energy Econv

d , associated with the peak of the distribution, which moves with
time deeper and deeper into the gap. The electrons located in the upper part of the packet
(E > Econv

d ) are in thermal equilibrium with the free electrons of the conduction band and their
density is gc(E) × f (E), with f (E) the Boltzmann occupation function. In the lower part of
the packet (E < Econv

d ) the electrons are distributed in parallel to the CBT. The conduction
is controlled by electron capture and emission and the transport occurs through the extended
states at Ec. Figure 4 shows the energy distribution of the electron density ni at times from
10−14 to 1 s, varying by a factor of 10 step, in the case where EH is coupled to MT. After the
initial trapping of electrons, they are distributed in parallel to the CBT. The electrons initially
located in the shallow states of high density move to lower energy levels by downward hopping.

6
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Figure 3. Energy distribution of the trapped electron density ni , in the conventional case without
EH consideration, for times ranging from 10−14 to 1 s with a factor of 10 step and at T = 90 K.
The conventional demarcation energy Econv

d defined as the distribution peak is indicated.

Figure 4. Energy distribution of the trapped electron density ni , in the new case with EH
consideration, for times ranging from 10−14 to 1 s with a factor of 10 step and at T = 90 K.
The demarcation energy Ehop

d defined by the distribution peak is indicated.

This is due to the fact that the downward hopping rate expressed by equation (10a) dominates
at high density of states since the overlap term exp(− 2Ri, j

a ) is high. The electrons will then
hop down to deeper states and subsequently accumulate at a certain energy depth where the
state density is low enough to prevent more downward hopping. During this thermalization,
the majority of electrons are concentrated in the states around the charge distribution peak
that represents the new demarcation level Ehop

d which moves deeper into the gap with time.
According to Monroe [5], the demarcation level is defined as the energy at which the typical
downward hopping rate �typ is equal to the reciprocal of the elapsed time following the excess
carrier generation. �typ is given by the equation

�typ = ν0 exp[−2a−1(kBTcGc)
−1/3 exp(−E/3kBTc)] (16)
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and the demarcation energy at which �typ(E)t = 1 is

Ed = kBTc ln(8a−3/(kBTcGc)) − 3kBTc ln[ln(ν0t)]. (17)

Equation (17) is applied in the case of downward hopping for t < [τs = ν−1
0 exp(3Tc/T )].

Monroe suggested that the thermalization must be dominated by the downward hopping process
until the time τs, called the time of segregation. For t > τs, the majority of electrons are
concentrated around a thermalization energy given by the expression

Eth = −kBT ln(νtypt) (18)

where the typical hopping frequency νtyp = τ−1
s exp(−Et/kBT ) is associated with upward

hopping to a dominant hopping transport path, analogous to the mobility edge Ec. Monroe
stated that this path is centered at the transport level Et defined by

Et = kBTc ln(8a−3/(27kBTcGc)) − 3kBTc ln(Tc/T ). (19)

As Ed advances deeper into the gap, the downward hopping rate decreases because the
exponential density of states decreases quickly with energy. Consequently, it becomes
increasingly hard for the electron to find a close neighbor state to hop to. After a certain time, it
becomes favorable for electrons to hop up in energy and so there is an increase of the number of
states available for thermalization. Further thermalization then occurs by the hopping process.
In this case, the thermalization energy Eth sinks into the gap following equation (18). At
long times, electrons in deep states are thermally excited to the transport level Et at which
the variation of the overlap term in equation (10b) becomes too small to compete with the
Boltzmann factor in the same equation. The transport is ensured by the hopping process and
the dominated conduction is through the states located around the transport level Et. We can
therefore summarize the EH transport as follows: at short times, the electrons are in shallow
states and move by hopping down to lower energies. When they reach Et, it will happen
that further hopping down to states below Et is soon followed by electron upward hopping
to Et. The EH process near Et is similar to MT transport where electrons are activated to
the mobility edge Ec, and Et is a transport path similar to Ec. The development of such a
dominant conduction path within localized states is shown in figure 5. This illustrates the
energy distribution of the hopping photoconductivity σhop(E) given by equation (12) at times
ranging from 10−14 to 104 s with a factor of 10 step. A conduction path is identified around
the peak of each distribution, which shifts to deeper states for t � 10−5 s. This behavior of the
photoconductivity corresponds to the initial downward hopping regime. Afterwards, the peak
stops shifting at the transport energy −0.17 eV below Ec. This is clarified in figure 6, where
we plot the photoconductivity distribution peak as a function of time. There is a transition time
at about 10−5 s, after which the peak stops shifting down and stays close to −0.17 eV. The
curve contains a dip feature at about 10−5 s (indicated by the arrow) just before it levels out at
the energy −0.17 eV to indicate no more shift of the distribution peak beyond this level. This
feature is also obtained by Main et al [7] in their TPC simulation dealing with combined MT
and EH transport in disordered semiconductors. Indeed, as predicted by Monroe analysis, the
transport energy calculated using equation (19) is at 0.18 eV below Ec, which is in reasonable
agreement with the result of our simulations and the simulations of Main et al [7].

In figure 7, the demarcation energy Ehop
d (transport with EH) and the demarcation energy

Econv
d (transport without EH) are plotted together as functions of time (curves with symbol

� and symbol ◦, respectively). The equivalent results of Monroe are also shown for
comparison: the Ehop

d -equivalent curve obtained by using equation (17) for up to the time τs

and equation (18) thereafter (curve with symbol ) and the Econv
d -equivalent curve obtained by

simply using the conventional MT relation Eth = −kT ln(ν0t) (curve with symbol •). It can

8
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Figure 5. Energy distribution of the EH photoconductivity, σhop(E), for times ranging from 10−14

to 104 s with a factor of 10 step and at T = 90 K. The transport energy Et associated with the
distribution peak is indicated.

Figure 6. Time dependence of the transport energy Et defined in figure 5 as the peak of the EH
photoconductivity distribution.

be seen that our simulated Ehop
d -curve and its equivalent by Monroe analysis have the same

form and are very close one to the other for t > (τs = 1.5 × 10−8 s). The only noticeable
small difference between them lies in the range of time t < τs. This is possibly related to
the Monroe approach, in which less importance was given to the role of shallower states in
the hopping transport. We can also realize that the demarcation energy Ehop

d is parallel to
Eth = −kBT ln(ν0t) for simple MT transport for times longer than τs.

To examine the relative contribution of each of the two mechanisms, MT and EH, to the
TPC, we re-plot figure 2 at two other temperatures, at low temperature (T = 60 K), where EH is
expected to dominate the TPC, and at high temperature (T = 300 K), where MT is expected to
be the predominant. In figure 8(a) we plot the 60 K curves of σconv (symbol ∗), σph (symbol ◦),
σhop (symbol �), and σMT (symbol +), where we can see clearly that MT dominates the TPC in

9
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the range below 10−12 s and EH dominates above 10−12 s. The effect of EH on the conventional
TPC σconv is well pronounced at 60 K compared to the case of 90 K (figure 2). Below 10−12 s
trapping has not started yet for the electrons to start hopping, but as soon as trapping begins the
EH takes place as the predominant mechanism (σhop = σph) and the MT current component
σMT falls rapidly to more than three orders of magnitude below σhop. The four photocurrents
decay in parallel according to the power-law t−(1−αc) [3, 4]. In figure 8(b) we plot the 300 K
curves of σconv (symbol ∗), σph (symbol ◦), σhop (symbol �) and σMT (symbol +). We can see
clearly that EH has no effect on σconv. The MT component σMT, being superimposed on σph

and σconv, dominates the TPC over the entire simulation time range, whereas σhop is at least one
order of magnitude less.

Figure 7. Time dependence of demarcation energies: �, Ehop
d , simulated with the presence of

EH as the peak of the trapped electron density distribution in figure 4; , demarcation energy
defined by Monroe (equations (17) and (18)), to be compared with Ehop

d ; ◦, EMT
d , simulated

with the absence of EH, as the peak of the trapped electron density distribution in figure 3;•, demarcation energy Eth = −kBT ln(ν0t) to be compared with EMT
d .

To determine the transition temperature where the TPC switches from high temperature
MT transport to low temperature EH transport, we plot, in figure 9, the temperature dependence
of σph (symbol ◦) and its MT and EH components, σhop (symbol �) and σMT (symbol +), at
t = 1 μs. The time t = 1 μs is chosen as a good mid-value in the log timescale at which
MT has already settled at high temperatures, and EH is expected to build up at the expense of
MT as the temperature decreases. The curve associated with the conventional TPC, σconv, is
also shown (symbol ∗) to observe its change due to EH. A clear transition can be identified
around T = 130 K, below which the TPC switches smoothly to become EH controlled. In
our previous paper on the steady state photoconductivity (SSPC) in a-Si:H with EH [8], we
simulated a transition temperature from extended-state conduction to EH of about 110–120 K,
which is about 10–20 K lower than the transition temperature simulated in the TPC case using
the same parameters. To reconcile the two cases, we note that in the SSPC the carrier generation
is continuous and the quasi-Fermi levels are close to the bands. Therefore, the density of empty
states in the CBT is lower than in the TPC case where excited electrons thermalize into empty
states with the dark Fermi level at mid-gap. The inter-state distance Ri, j is then shorter in

the TPC case and the hopping factor exp(− 2Ri, j

a ) is higher, which can favor EH at higher
temperatures and thus can shift up the transition temperature in the TPC compared to the SSPC.

10
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Figure 8. The TPC σph (symbol ◦) and its components, MT photoconductivity σMT (symbol +)
and EH photoconductivity σhop (symbol �). The conventional TPC σconv (symbol ∗) simulated
without EH consideration is also shown for comparison, (a) at T = 60 K and (b) at T = 300 K.

Figure 9. TPC and components as functions of temperature at t = 1 μs. A transition temperature
around 130 K from high temperature MT transport to low temperature EH transport is determined.

11
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4. Conclusion

The TPC in undoped a-Si:H is studied by numerical simulations at low and high temperatures
in terms of a model coupling the MT and EH transports. The results are in good agreement
with previous theoretical results. They provide an overall insight in which the temperature
dependence of the TPC can be interpreted in terms of a transition from extended-state
conduction via MT dominating at high and moderate temperatures T > 130 K to localized-
state EH below 130 K. The predictions of Monroe analysis related to carrier thermalization and
transport in exponential distribution of localized states are in good agreement with the results
of our simulations, such as the EH transport energy Et and the demarcation energy with the
presence of EH Ehop

d .
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